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Abstract
The stability of a one-component model system interacting through an isotropic
potential with an attractive part and a softened core is investigated through
integral equations and molecular dynamics simulation. The ‘penetrability’ of
the soft core makes it possible for the system to pass from an expanded liquid
structure at intermediate densities to a more compact one at high densities.

When speaking of liquid–liquid transitions, one usually thinks of multi-component systems
such as fluid mixtures. In fact, as is well known, these systems are not always miscible
and may separate into two fluids with different concentrations and densities. In the last few
years the possibility that single-component systems may also exhibit a liquid–liquid transition
has received considerable attention. Recent experimental results [1] indicate that phosphorus
can have a high-density-liquid (HDL) and a low-density-liquid (LDL) phase. A first-order
transition between two liquids of different densities [2] is consistent with experimental data
for a variety of materials including single-component systems such as water [3–6], silica [7]
and carbon [8]. Moreover, molecular dynamics (MD) simulations of specific models for
supercooled water [2, 9], liquid carbon [10] and supercooled silica [11] predict a LDL–HDL
critical point.

Several explanations have been developed to explain the liquid–liquid phase transition,
based on the use of anisotropic potentials [2, 9–11] or on two-liquid models [12]. Recently
[13,14] it was shown through numerical simulation and theoretical approaches that the presence
of a LDL and a HDL can arise solely from an isotropic interaction potential with an attractive
part and with two characteristic short-range repulsive distances.

In molecular liquid phosphorus as well as in water, expanded and compact structures
compete with each other and are preferred respectively at low and high pressures and
temperatures [1, 4, 6]. This suggests a pair interaction with two characteristic distances. The
first distance can be associated with the hard-core exclusion between two particles and the
second distance with a weak (soft-core) repulsion which can be overcome at large pressure.
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Figure 1. The pair potential U(r) as a function of the distance r between two particles.

These features can be incorporated into a simple isotropic soft-core pair potential to be regarded
as resulting from averaging over the angular parts of more realistic potentials. An isotropic
potential with a softened core has already been proposed in the literature in several different
contexts including those of simple metals [2, 15–17] and supercooled liquids [18–20].

The isotropic pair potential considered here (figure 1) consists of a hard core of radius
a with a repulsive square shoulder of height UR > 0 and radius b > a, plus an attractive
component having the form of a square well of depth −UA < 0 extending from r = b to
r = c. If we choose the hard-core radius as the length unit and the well depth as the unit
of energy, we are left with three free parameters: b/a, c/a and UR/UA. Since the number
of possible combinations of these is huge it is useful to perform a first qualitative analysis
of the phase behaviour of the system using a fast, even if not very accurate, investigation
method.

Integral equations for the radial distribution function [21] may provide such a tool. One
of the simplest integral theories is the hypernetted-chain (HNC) equation [21]. For such an
equation there exists a region of ρ–T thermodynamic plane where no solution can be found.
A strict identification of the locus of the points below which the theory ceases to work with
the spinodal line of the fluid is not possible. In fact, though the isothermal compressibility
considerably increases when this region is approached from above, a real divergence of
the isothermal compressibility is predicted by the theory only in some particular density–
temperature regimes [22]. In spite of this limitation, it has been observed that, for a large
number of simple fluid pair potentials, the shape of the region where no solution is found
qualitatively resembles the region of spinodal decomposition of the fluid, where the system
separates into two fluid phases [23].

Due to its approximate nature, the HNC equation is thermodynamically inconsistent, i.e.
the equations of state obtained following the virial, compressibility and energy routes do not
coincide. There are a number of ways [23] in which this inconsistency can be removed,
giving rise to more reliable theories. So it is possible to obtain more accurate estimates of
the spinodal line and, being the new theory thermodynamically consistent, also to calculate
the binodal line. However, due to the additional numerical procedures needed to impose the
thermodynamical consistency requirement, these equations, though much faster than numerical
simulation, needs more computational time than the HNC equation, which thus appears well
suited for an extensive investigation in the parameter space of the model potential.
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Figure 2. The instability line of the HNC equation (b/a = 1.4, c/a = 1.7). Each curve is labelled
with the corresponding value of UR/UA.

We first calculate the instability line of the HNC equation for the potential investigated
in [19]. The corresponding parameters are b/a = 1.4, c/a = 1.7, UR/UA = −0.5. In this
case the repulsive shoulder is, so to say, ‘buried’ in the attractive well. Though it was shown
that the system shows thermodynamic anomalies typical of water [19], the instability line of
the HNC equation (see figure 2) is similar to the spinodal line usually exhibited by a simple
fluid, such as a Lennard-Jones fluid. Upon increasing the height of the shoulder there is no
evident topological change of the line (even for positive values of UR/UA), other than a shift
towards lower temperatures as a result of the overall decrease of the interparticle attraction.

We next consider a potential with a shoulder wider than that of the previous case and an
attractive well having the same width (b/a = 1.7, c/a = 2). The instability line was calculated
for several values of UR/UA (see figure 3). We found that upon increasing the height of the
shoulder the maximum of the line moves markedly to lower densities. This can be explained by
observing that as UR/UA increases, the repulsive shoulder becomes less and less penetrable.
So for UR/UA sufficiently large the fluid behaves as a fluid of hard spheres with radius equal
to the external radius b of the shoulder. Consequently, the critical density tends to the value
ρc = ρHS/b

3, where ρHS is the critical density for a fluid of hard spheres having radius 1.
Comparing figures 2 and 3 we note an important difference. For the case with the wider

shoulder, as UR/UA increases the instability line becomes rather flat, instead of decreasing,
at high densities. This suggests that a marked topological change might be observed for a
potential with an even wider shoulder. So we next considered a potential with b/a = 2,
c/a = 2.2. The results, shown in figure 4, show that for intermediate values of UR/UA the
instability line has two clearly distinct maxima, thus suggesting the possible presence of two
critical points in the phase diagram of the fluid. For large values of UR/UA, this feature
disappears and the instability line becomes that typical of a fluid of hard spheres with radius
b. Finally in figure 5 we show the results obtained for b/a = 2.5, c/a = 3. In this case also,
we found an instability line with two maxima.

Having obtained, through the HNC equation, an estimate of the phase behaviour of the
system, we choose a set of potential parameters (b/a = 2.0, c/a = 2.2 and UR/UA = 0.5) for
which we expect the system to exhibit two critical points, and perform an accurate study of the
phase diagram making use of MD simulation. We perform MD simulations in 3D at constant
volume V and number of particles N = 490 and 850. We use periodic boundary conditions, a
standard collision event list algorithm [19] and a modified Berendsen method to control T [24].
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Figure 3. The instability line of the HNC equation (b/a = 1.7, c/a = 2). Each curve is labelled
with the corresponding value of UR/UA.
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Figure 4. The instability line of the HNC equation (b/a = 2, c/a = 2.2). Each curve is labelled
with the corresponding value of UR/UA.



Liquid–liquid phase transition in one-component fluids 2197

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2

te
m

pe
ra

tu
re

  T
 (

U
A
/k

B
)

number density  ρ (a-3)

0.5

0.7

0.8

0.9

Figure 5. The instability line of the HNC equation (b/a = 2.5, c/a = 3). Each curve is labelled
with the corresponding value of UR/UA.
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Figure 6. The pressure–density isotherms, crystallization line and spinodal line from the MD
simulations. (a) Several isotherms for (bottom to top) kBT /UA = 0.57, 0.59, 0.61, 0.63, 0.65,
0.67 (kB is the Boltzmann constant). Diamonds represent data points and lines are guides for
the eyes. The solid line connecting local maxima and minima along the isotherms represents the
spinodal line. The two maxima of the spinodal line (squares) represent the two critical points C1 and
C2. To determine the crystallization line (grey line) we place a crystal seed, prepared at very low
T , in contact with the fluid, and check, for each (T , ρ), whether the seed grows or melts after 106

MD steps. (b) An enlarged view of (a) around the gas–LDL critical point C1 for kBT /UA = 0.570,
0.580, 0.590, 0.595, 0.600, 0.610, 0.620, 0.630.
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Figure 7. The P –T phase diagram, with coexistence lines and critical points resulting from MD
simulations. (a) The solid black curve with dots is the gas–HDL coexistence line. The projection
of the spinodal line is represented by diamonds with dashed lines. The critical point C1 is for the
gas–LDL transition, and C2 is for the gas–HDL transition. (b) A blow-up of (a) in the vicinity
of C1. The gas–LDL coexistence line is represented by the solid curve in the stable portion (with
respect to the HDL phase) and by the dashed curve with circles in the metastable region. The grey
line is the LDL–HDL coexistence line. The triangle represents the triple point.

In our simulations we find two regions (figure 6) with negatively sloped isotherms and the
overall shape of the spinodal line has two maxima, showing the presence of two critical points,
C1 and C2. Using the Maxwell construction in the P –V plane [2], we evaluate the coexistence
lines of the two fluid phases associated with each critical point (figure 7). Considering both
the maxima of the spinodal line and the maxima of the coexistence regions in the P –ρ and
P –T planes, we estimate the low-density critical point C1 at T1 = 0.606 ± 0.004 UA/kB ,
P1 = 0.0177 ± 0.0008 UA/a3, ρ1 = 0.11 ± 0.01 a−3 and the high-density critical point C2 at
T2 = 0.665 ± 0.005 UA/kB , P2 = 0.10 ± 0.01 UA/a3, ρ2 = 0.32 ± 0.03 a−3. The critical
point C1 is at the end of the phase transition line separating the gas phase and the LDL phase,
while the critical point C2 is at the end of the phase transition line separating the gas phase
and the HDL phase. Their relative positions resemble those in the phosphorus phase diagram,
except that, in the experiments, C2 has not been located [1]. The point where the gas–LDL
coexistence line merges with the LDL–HDL coexistence line is a triple point where three fluid
phases simultaneously coexist.

We considered also a different set of parameters (b/a = 2.5, c/a = 3 and UR/UA = 0.8)
and calculated the phase diagram making use of a thermodynamically self-consistent integral
theory (the so-called HMSA equation [25]). As shown in figure 8, the T –ρ phase diagram
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Figure 8. The T , ρ phase diagram obtained through the HMSA equation. Coexistence lines:
gas–liquid (solid curve with circles), liquid–liquid (solid curve with dots). Squares represent the
critical points. The dashed curve with no symbols is the freezing line estimated through the HV
rule.
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Figure 9. The P , T phase diagram obtained through the HMSA equation. Squares represent the
critical points. Triangles represent the triple points. The dashed curve with no symbols is the
freezing line estimated through the HV rule.

of the system exhibits two distinct binodal lines and thus two critical points, denoted as C1

and C2. The critical densities and temperatures are respectively ρ1 = 0.06, T1 = 1.3 and
ρ2 = 0.77, T2 = 0.55. These values were estimated using the rectilinear diameter rule and
the scaling relationship for the width of the coexistence curve with the non-classical exponent
β ≈ 0.325. Below T1 the system separates into a gas and a liquid phase. Below T2 the liquid
phase separates into distinct LDL and HDL phases.

With respect to the case investigated through MD simulation, the relative position of the
two critical points is inverted as far as the temperature is concerned, T1 being, for the second
set of parameters, higher than T2. Moreover C1 now lies in the stable region, while since
the critical point C2 is well below the freezing line (estimated using the Hansen–Verlet (HV)
rule [21]), the liquid–liquid transition occurs between metastable phases in the supercooled
region of the system. This feature resembles the scenario proposed for water [26, 27], but
in that case the liquid–liquid coexistence line is expected to start from C2, running at higher
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pressures as T decreases [9]. In the system investigated, in contrast, this line runs at lower
pressures as T decreases (see figure 9). Thus the gas–liquid and the liquid–liquid coexistence
lines meet in a gas–liquid–liquid triple point which lies in the supercooled phase.

The results presented show that a pure model system, with a simple isotropic potential,
may have a rich phase behaviour with features typical of substances characterized by complex
anisotropic interactions. We note that the soft-core potential with the sets of parameters
considered here displays no ‘density anomaly’ (∂V/∂T )P < 0. This result is at first sight
surprising, since soft-core potentials have often been used to explain the density anomaly
(see, e.g., [2, 19]). The condition (∂V/∂T )P < 0 implies (∂S/∂V )T < 0, i.e. the disorder,
measured by the entropy S, in the system increases for decreasing volume, as for water. This is
consistent with the negative slope of the crystal–liquid transition line for water, as predicted by
the Clausius–Clapeyron equation dP/dT = �S/�V , where �S and �V are the entropy and
volume differences between the two coexisting phases. For our system we expect the reverse:
(∂V/∂T )P > 0 so (∂S/∂V )T > 0, consistent with the positive slope of the LDL–HDL
transition line dP/dT (see figures 7 and 9).

According to our results, the presence of two critical points and the occurrence of the
density anomaly are not necessarily related. Thus liquid–liquid phase transition may occur in
systems with no density anomaly and in particular in liquid metals that can be described by
soft-core potentials.
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